Differentiator
NAME_TABLE:
C_Function_Name: cm_d_dt
Spice_Model_Name: d_dt
Description: "time-derivative block"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: gain out_offset
Description: "gain" "output offset"
Data_Type: real real
Default_Value: 1.0 0.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: out_lower_limit out_upper_limit
Description: "output lower limit" "output upper limit"
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: limit_range
Description: "upper & lower limit smoothing range"
Data_Type: real
Default_Value: 1.0e-6
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
- Description:
The Differentiator block is a simple derivative stage that approximates the time derivative of an input signal by calculating the incremental slope of that signal since the previous time point. The block also includes gain and output offset parameters to allow for tailoring of the required signal, and output upper and lower limits to prevent convergence errors resulting from excessively large output values. The incremental value of output below the output upper limit and above the output lower limit at which smoothing begins is specified via the limit range parameter. In AC analysis, the value returned is equal to the radian frequency of analysis multiplied by the gain.
Note that since truncation error checking is not included in the d_dt block, it is not recommended that the model be used to provide an integration function through the use of a feedback loop. Such an arrangement could produce erroneous results. Instead, you should make use of the "integrate" model, which does include truncation error checking for enhanced accuracy.
Example SPICE Usage:
a12 7 12 slope_gen
.
.
.model slope_gen d_dt(out_offset=0.0 gain=1.0
+ out_lower_limit=1e-12 out_upper_limit=1e12
+ limit_range=1e-9)