Digital Simulation

Digital circuit simulation differs from analog circuit simulation in several respects. A primary difference is that a solution of Kirchhoff's laws is not required. Instead, the simulator must only determine whether a change in the logic state of a node has occurred and propagate this change to connected elements. Such a change is called an `event'.

When an event occurs, the simulator examines only those circuit elements that are affected by the event. As a result, matrix analysis is not required in digital simulators. By comparison, analog simulators must iteratively solve for the behavior of the entire circuit because of the forward and reverse transmission properties of analog components. This difference results in a considerable computational advantage for digital circuit simulators, which is reflected in the significantly greater speed of digital simulations.