Model by Statz e.a.
The MESFET model level 1 is derived from the GaAs FET model of Statz et al. as described in [11]. The dc characteristics are defined by the parameters VTO, B, and BETA, which determine the variation of drain current with gate voltage, ALPHA, which determines saturation voltage, and LAMBDA, which determines the output conductance. The formula are given by:
[\begin{array}{ll} {I_{d} = \begin{cases} {\frac{B\left( V_{gs} - V_{T})^{2} \right.}{1 + b\left( {V_{gs} - V_{T}} \right)}\left| {1 - \left| {1 - A\frac{V_{ds}}{3}} \right|^{3}} \right|\left( {1 + LV_{ds}} \right)} & {{for}0 < V_{ds} < \frac{3}{A}} \ {\frac{B\left( V_{gs} - V_{T})^{2} \right.}{1 + b\left( {V_{gs} - V_{T}} \right)}\left( {1 + LV_{ds}} \right)} & {{for}V > \frac{3}{A}} \ \end{cases}} & \ \end{array}]
Two ohmic resistances, rd and rs, are included. Charge storage is modeled by total gate charge as a function of gate-drain and gate-source voltages and is defined by the parameters cgs, cgd, and pb.
Name
|
Parameter
|
Units
|
Default
|
Example
|
Area
|
VTO
|
Pinch-off voltage
|
V
|
-2.0
|
-2.0
|
|
BETA
|
Transconductance parameter
|
$\frac{A}{V^{2}}$
|
1.0e-4
|
1.0e-3
|
*
|
B
|
Doping tail extending parameter
|
$\frac{1}{V}$
|
0.3
|
0.3
|
*
|
ALPHA
|
Saturation voltage parameter
|
$\frac{1}{V}$
|
2
|
2
|
*
|
LAMBDA
|
Channel-length modulation parameter
|
$\frac{1}{V}$
|
0
|
1.0e-4
|
|
RD
|
Drain ohmic resistance
|
Ω
|
0
|
100
|
*
|
RS
|
Source ohmic resistance
|
Ω
|
0
|
100
|
*
|
CGS
|
Zero-bias G-S junction capacitance
|
F
|
0
|
5pF
|
*
|
CGD
|
Zero-bias G-D junction capacitance
|
F
|
0
|
1pF
|
*
|
PB
|
Gate junction potential
|
V
|
1
|
0.6
|
|
KF
|
Flicker noise coefficient
|
-
|
0
|
||
AF
|
Flicker noise exponent
|
-
|
1
|
||
FC
|
Coefficient for forward-bias depletion capacitance formula
|
-
|
0.5
|
Device instance:
z1 2 3 0 mesmod area=1.4
Model:
.model mesmod nmf level=1 rd=46 rs=46 vt0=-1.3
+ lambda=0.03 alpha=3 beta=1.4e-3